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Testing for a Shift in Mean Without Having to 
Estimate Serial-Correlation Parameters 

Timothy J. VOGELSANG 
Department of Economics, Cornell University, Ithaca, NY 14853-7601 (tjv2@cornell.edu) 

Tests for detecting a shift in the mean of a univariate time series that do not require estimation of 
serial-correlation parameters are proposed. The statistics are valid whether the errors are stationary 
or have a unit root. The date of the shift may be known or unknown. The statistics are based on 
a simple transformation of the data and are functions of partial sums of the data. These so-called 
partial sum statistics are shown to be asymptotically invariant to serial-correlation parameters. The 
statistics are shown to have good size and power properties asymptotically and in finite samples. 

KEY WORDS: HACE; Partial sum; Structural change; Unit root; Wald test. 

In this article statistics are proposed that can detect a shift 
in the mean of a univariate time series. The date of the shift 
can be known or unknown, and correlated errors are permit- 
ted. The statistics are valid whether the errors are stationary 
or have a unit root. This is an important property because it 
is often not known whether a series has stationary or unit- 
root errors. Therefore, the applied researcher can apply the 
tests while being agnostic about a unit root. The statistics 
are also asymptotically similar without requiring estimation 
(parametric or nonparametric) of serial-correlation param- 
eters. 

Recently, many statistics have been proposed to test for 
stability of the mean while permitting serial correlation in 
the data, including those of Andrews (1993), Andrews and 
Ploberger (1994), Bai, Lumsdaine, and Stock (in press), 
Chen and Tiao (1990), Kramer, Ploberger, and Alt (1988), 
Perron (1991), and Vogelsang (1994a). Bayesian approaches 
were given by Carlin, Gelfand, and Smith (1992) and Mc- 
Culloch and Tsay (1993). All of these procedures require 
either a full specification of the dynamics, the addition of 
lags of the dependent variable, or consistent estimates of 
serial-correlation parameters. Poor handling of the dynam- 
ics and serial correlation can result in undesirable properties 
in finite samples. 

To construct statistics that do not require estimation of 
serial-correlation parameters, a simple transformation of 
the data based on partial sums is used. The transformed 
data will have at least one unit root by construction. It is the 
presence of a unit root that yields statistics that are asymp- 
totically invariant to the serial-correlation parameters. As 
one should expect, when the errors are iid, the introduc- 
tion of a unit root penalizes the local asymptotic power of 
the tests compared to using the original data. Surprisingly 
though, the reduction in local asymptotic power is not that 
substantial. Even more surprising is that there are cases in 
which using the transformed data actually improves the lo- 
cal asymptotic power compared to test statistics based on 
the original data. An example is when the date of the mean 
shift is unknown and a supremum statistic is used. In finite 
samples, statistics based on the transformed data exhibit 
better exact size and are often more powerful than statis- 
tics based on the untransformed data. 

The layout of the article is as follows. In Section 1, the 
model and statistics are described. Limiting distributions 
under the null hypothesis are given and tabulated. In Sec- 
tion 2, asymptotic power results are provided and discussed. 
Section 3 contains the results of finite-sample simulations. 
Concluding remarks are given in Section 4. 

1. THE MODEL AND STATISTICS 

1.I The Data-Generating Process and Assumptions 

Consider the following data-generating process (DGP) 
for a univariate time series {y t ) y ,  

where DU," = 1if t > T; and 0 otherwise, T," is the date of 
the mean shift, and {u t ) is a mean-zero error process. De- 
fine the partial sums of {u t }as St = C4=1uj. TWO sets of 
assumptions are considered for {u t ) ,depending on whether 
or not {u t )  has a unit root. Let W ( r )denote a standard 
Wiener process defined on (0, 11, let 3 denote weak con- 
vergence in distribution, and let [XI denote the integer part 
of 2.  

l i r n ~ + ~  TAssumption I :  ut is I(0)with a2= E(T-'(C,=, 
1 ~ ~ ) ~ ) 3 aW(r) .and T - ~ / ~ s , ,  

Assumption 2: ut = utV1+vt,uo = 0, and vt satisfies As- 
sumption 1 with w2 = l i r n ~ + ~E(T-' (cT=~ vt)') in place 
of a2. 

In addition, define a: = l i r n ~ , ~E(T-' cT=~ u;). To 
make the asymptotics tractable, it is assumed that A, = 

T;/T remains a fixed constant as the sample size grows. In 
the case of an unknown shift date, regressions will be esti- 
mated using a shift date, Tb,that may be different from T,". 
It is assumed that X = Tb/T remains fixed as the sample 
size grows. 

The statistics are based on the following transformation 
tof the data. Define zt = C,=,yj. The time series { z t ) is 
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the partial sum of {yt) ,which, applied to (I),  gives 

zt = pt + 6DTf + St,  (2) 

where DT," = (t-T,") if t > T," and 0 otherwise. Note that 
{ z t ) is a trending process with unit-root errors with slope 
p before T," and slope p +6 after T,". 

The null hypothesis is that the mean of {y , )  is stable 
or that the trend of (2,) is stable. In both cases the null 
hypothesis is S = 0. The alternative is that { y , )  has a shift 
in mean or equivalently {z,) has a shift in slope. Permitting 
more than one break in the trend function is not difficult, but 
because the focus of this article is constructing tests when 
the form of serial correlation is unknown, the simplicity of 
the single-break model helps to delineate the results. 

When testing the null hypothesis, a2and a: are nuisance 
parameters related to the serial correlation in {u,}.In prac- 
tice u2 can be estimated parametrically through the addition 
of lags of { y t )  to the model or nonparametrically using es- 
timators such as those proposed by Andrews (1991) and 
Andrews and Monahan (1992). These approaches are re- 
viewed next and are later compared to the new statistics. 

1.2 The Chow Test 

For now assume that the shift date is known and As- 
sumption 1 applies. A standard approach in testing the null 
hypothesis is to estimate (1) by ordinary least squares (OLS) 
and perform a Chow (1960) test. The Chow statistic is sim- 
ply the standard Wald statistic for testing 6 = 0 in (1) and 
is denoted by ChowT(T,"). It is a well-known result that, 
under the null hypothesis of no shift in mean and Assump- 
tion 1, ChowT(T,") + ( 0 ~ / u i ) ~ 2 .The Chow statistic has a 
limiting distribution that depends on a2and 02. When {u t )  
is iid, a2= a:, and the Chow statistic has a limiting distri- 
bution free of nuisance parameters. Otherwise, a2and a: 
need to be estimated. There are two common approaches 
often used. 

The first method assumes that {u t ) is an autoregressive 
moving average (ARMA) process and is based on the re- 
gression 

Let ChowLT(Tb) denote the Chow statistic based on Re- 
gression (3). If the errors follow a pure AR(p) process, k 
is set equal to p. If the errors have an invertible MA com- 
ponent, then enough lags are included to approximate the 
MA component by a long autoregression. Asymptotically, 
the Chow statistic will be invariant to a2and a: and have 
a X2 distribution provided the number of lags is no smaller 
than p for a pure AR process or provided the number of 
lags grows at a suitable rate as the sample size grows if an 
MA component is present (see Said and Dickey 1984). 

The second method involves replacing the OLS estimate 
of the error variance in the Wald statistic with e2,  a con- 
sistent estimate of a2.Denote this statistic by Chow;(T,") 
defined as Chow;(T;) = - y)]2/[82T,"(T-[ E & + , ( ~ ~  

Journal of Business & Economic Statistics, January 1998 

T,")]. Under the null hypothesis and Assumption 1, 
Chow;(T,") + X f  using standard results. Typical estima- 
tors of a2 include those of Andrews (1991) and Andrews 
and Monahan (1992) such as 6' = w(j/L)%(j), 
where w(.) is a kernel function, -j.(j) = xTTT?T-' iitiit+J 
are the sample autocovariances of the residuals from Re- 
gression (I), and L is a truncation lag parameter. 

A difficulty with the preceding approaches is the need to 
specify in finite samples either k, L, and/or w(.).Although 
asymptotic theory gives some guidelines as to how k or L 
must be chosen as the sample size grows, these rules be- 
come arbitrary in finite samples, and the performance of the 
statistics depends crucially on these choices. Recent work 
has shown that data-dependent methods can often substan- 
tially reduce much of the arbitrary nature of these choices. 
For example, Hall (1994), Ng and Perron (1995), and Perron 
and Vogelsang (1992) showed that data-dependent choices 
of k can work well in practice. In those approaches, how- 
ever, a choice of maximal lag length must still be made. 
The important work of Andrews (1991) and Andrews and 
Monahan (1992) has shown that automatic choices of the 
truncation lag based on the plug-in method can work well 
in practice. But, their procedures require the choice of an 
approximating parametric model. 

1.3 The Partial Sum (PS) Statistic 

Consider estimating regression (2) by OLS and construct- 
ing the standard Wald statistic for testing S = 0. Let 
PST(T,") denote this Wald statistic divided by the sample 
size, T. The Wald statistic must be normalized by the sam- 
ple size to arrive at a nondegenerate asymptotic distribution 
due to the unit root in {S t ) .Under the null hypothesis and 
Assumption 1, it follows from Theorem 1 of Vogelsang (in 
press) that 

1
where, HI  (A,) = SAC( r  - Ac)W(r) dr - (1 - AC)'(2 + 
A,) rW(r )  dr, Hz = J;: FV(r)' dr - rW(r)  drI2, and 3 [ ~ %  
K(Ac)= (1 -Ac)3Az(3+ Ac)/12. This limiting distribution 
is nonstandard, and asymptotic critical values were sim-
ulated using N(0, 1) iid random deviates to approximate 
the Wiener processes. The integrals were approximated by 
normalized sums of 1,000 steps using 10,000 replications. 
The random-number generator used was ranl( ) taken from 
Press, Flannery, Teukolsky, and Vetterling (1992) with ini- 
tial seed of -1,000. The tabulated critical values are given 
in Table 1 for A, = .1, .2, . . . , .9. Because the distribution 
does not depend on u2 and a:, there is no need to estimate 
a2and a: to use the PST statistic in practice. Section 1.4 
shows how to modify the PST statistic to account for a unit 
root in {ut) .  

1.4 Unit-Root Errors 

The asymptotic results in Sections 1.2 and 1.3 are no 
longer valid when { u t )has a unit root. For example, under 
the null hypothesis and Assumption 2, Vogelsang (1994a) 
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Table 1. Asymptotic Distributions: PS? Statistic, Known Shift Date, Stationary Errors 

NOTE: The critlcal values were calculated via slmulation methods using N(0, 1) iid random dev~ates to approximate the Wiener processes 
defined in the asymptotic distribution. The integrals were approximated by the normallzed sums of 1,000 steps using 10.000 replications 

showed that C ~ O W L T  is no longer chi-square distributed but 
has a nonstandard distribution, and it is easy to show that 
the Chow; statistic diverges to m. Therefore, a unit root in 
{ut) complicates inference when using the Chow statistics. 
Similarly, the limiting distribution of the PST statistic is 
affected by a unit root in the errors. To be precise, under the 
null hypothesis and Assumption 2, it follows from theorem 
2 of Vogelsang (in press) that 

1
where M1(A,) = LC( r  - A,)Q(r) dr - !j(1 - AC)'(2 + 
A,) J: rQ(r )  dr, M2 = Q(r)2 dr - 3:s; rQ(r )  drI2, and 
Q(r)  = JiW(s) ds. This distribution is different from (4) 
but like (4) is free of nuisance parameters. In an unreported 
simulation, the critical values for (5) were computed. The 
key feature of the critical values is that they are much larger 
than the critical values of (4). For example, the 5% critical 
value with A, = .5 is 38.71, which is much larger than 
4.361, the 5% critical value from Table 1. One implication 
of the large critical values in the unit-root case is that for 
series with highly persistent errors (a root near or equal 
unity) using PST with stationary critical values will result 
in an oversized test. If a unit root (or near unit root) cannot 
be ruled out, one could always take a conservative approach 
and use the unit-root critical value. This will keep the test 
from being oversized, but size will be nearly 0 if the er- 
rors are in fact stationary. This severe downward bias in 
size would heavily penalize power, making the PST statis- 
tic less useful when the errors are stationary. 

Fortunately, there is a simple modification of the PST 
statistic that corrects the size distortion caused by a unit 
root in {ut) that does not severely penalize power when the 
errors are stationary. The correction is based on the unit- 
root statistic of Park and Choi (1988) and Park (1990) con- 
structed using the following regression estimated by OLS: 

The statistic, denoted by JT(T,"), is defined as T-' times 
the standard Wald statistic for testing the joint hypothesis 
that yl = 72 = . . . = yg = 0. Note that JTis invariant to 
6. The JTstatistic has two useful properties. Regardless of 
6, under Assumption 1, JT(T,") - 0 and, under Assumption 
2, JT(T,") =+ J ( A , )  = {J; W*( T ) ~dr/ J: W** (r)' dr) - 1, 
where W*(r)  and W**(r) are the residuals from the pro- 

jection of W(r )  onto the spaces spanned by (1, duC) and 
(1, duC, r, r 2 , .. . ,r9),  respectively, with duC = 1 if r > A, 
and 0 otherwise. Notice that in both cases the limiting dis- 
tribution of JTdoes not depend on serial-correlation param- 
eters. Thus, the PST statistic can be modified with JTwhile 
retaining the property that serial-correlation parameters do 
not have to be estimated. 

Let b be a finite constant. Consider a modified 
version of the PST statistic defined as PS,"(T,") = 
PST (T,") exp(-bJT (T,")). When b = 0, the modification has 
no effect on PST. Under the null hypothesis, it follows from 
(4), (5), and the limiting behavior of JTthat 

under Assumption 1, PSF(T,") =+ PS(X,) (7) 

and 

under Assumption 2, PSF (T,") + PS, (A,) exp(- bJ(A,)) . 

When {ut) is stationary, the limiting distribution of PS? 
is equivalent to that of PST, so the modification does not 
affect the test asymptotically. When {ut) has a unit root, 
however, the constant b can be chosen so that the critical 
values of (8) are close to the critical values of (4). In partic- 
ular, for a given nominal size, b can be chosen so that PS," 
asymptotically has the same critical value (and hence size) 
for both stationary and unit-root errors. Thus, PS," can be 
used without prior knowledge of whether {ut) is stationary 
or has a unit root. Statistics proposed by Perron (1991) and 
Vogelsang (1994a) also share this property. 

Some justification is required for constructing JTusing 
9 as the highest-order polynomial of t in Regression (6) 
because JTcan be defined using other finite integers for 
the largest power of t .  The value of 9 was chosen based 
on a local asymptotic analysis of size and power of the 
PS? statistic. Details of that analysis are not provided for 
brevity but are available on request. The results are easy 
to summarize. The size of PS? remained stable regardless 
of the largest power of t used for JT, but power steadily 
increased as the largest power of t in JTincreased. But the 
increases in power were negligible when the greatest power 
of t exceeded 9. 

To implement the PST test, b must be computed. Given 
a desired significance level, b is chosen so that the criti- 
cal values are the same for stationary and unit-root errors. 
Because the distributions given by (7) and (8) are nonstan- 
dard, b must be computed using simulation methods. To 
facilitate computation of b for a range of significance lev- 
els, b was computed for percentiles p = .7, .71, . . . , .98, .99 
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and a b(p) function was fitted through those values. The 
functional form that provided an excellent fit in all cases is 
b(p) = a0 +a lp  +a2p2+a3p3+exp(a4+ 100p). Coefficient 
for the ails are given in Table 3. The b(p) function also 
simplifies computation of p values as follows. First, PST 
is computed using Regression (2). Second, JTis computed 
using Regression (6). Third, PSF is computed for a range 
of p's. The p value of the test is 1-p for p such that PSF is 
equal (or very close) to the corresponding stationary critical 
value. 

1.5 	 Chow and PS Statistics When the Shift Date is 
Unknown 

When the shift date is unknown, testing for a shift 
in mean falls into the class of tests in which a nui-
sance parameter (A,) is present only under the alterna- 
tive (6 # 0). Andrews and Ploberger (1994) derived the 
class of optimal tests in this framework in models with 
stationary errors and nontrending regressors. In the con- 
text of testing for structural change, this amounts to com- 
puting the Chow and PSF statistics for all possible break 
dates over some range A = {T;,T; + l , . . . , T  - Tb*) 
and then forming a composite statistic. Let A* = T;/T, 
and assume that A* remains fixed as the sample size 
grows. A* is typically called the amount of trimming. Let 
h ~ ( T b )  generically denote either of the Chow statistics, 
Chow; or ChowLT. Two statistics proposed by Andrews 
and Ploberger (1994) are the mean and mean-exponential 
statistics defined as meanhT = exphT =T-lCTbGAhT(Tb), 
l o g { ~ - ~ ~ T , ~ ~ e x ~ ( ~ h ~ ( ~ ~ ) ) } .The PS statistics are de-
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Table 3. Coefficients of b(p) = a0 + a l p  + a p p b  a3p3+ 
exp(a4 + loop), p E [.7, ,991 

Xc = .l 
Xc = .2 
Xc = .3 
Xc = .4 
Xc = .5 
X c = , 6  
Xc = .7 

= .8 
Xc = .9 

MeanPS 
ExPPS 
SUPPS 

MeanPS 
ExpPS 
SUPPS 

a0 a1 az 

Known break date 

-3.287 13.019 -16.709 
-1 7.349 67.094 -85.795 
-15.413 60.710 -78.576 
-15.707 61.057 -77.770 
-23.800 92.880 -1 19.223 
-17.147 67.696 -87.783 
-1 1.781 46.619 -60.600 
-13.197 51.372 -65.926 

-.885 3.981 -5.421 

Unknown break date: A* = 

-4.1 72 19.661 -26.995 
-1 2.752 54.809 -74.422 
-1 2.71 7 53.1 96 -70.687 

Unknown break date: A* = 

-5.183 23.397 -31.575 
-8.986 42.543 -60.427 

-13.491 55.858 -73.769 

a3 a4 

7.222 	 -1 01.771 
36.813 -100.735 
34.258 -100.106 
33.458 -1 00.195 
51.354 -100.535 
38.295 -100.645 
26.572 -100.523 
28.316 -101.326 
2.504 	 -1 01.434 

.01 

12.745 -1 00.291 
34.978 -99.400 
32.333 -99.387 

.10 

14.629 -100.252 
29.432 -99.324 
33.502 -99.372 

and expPST = ~ o ~ { T - ~ C ~ ~ ~ ~exp(-bJ$),~ x ~ ( ; P S ~ ( T ~ ) ) )  
where J$ = infTbEAJ T ( T b )JG is a statistic that could 
be used to test for a unit root while allowing a shift in 
mean at an unknown date. A third statistic that is not in 
the class of optimal statistics is the supremum statistic of 
Andrews (1993) defined as suphT = supTbEAhT(Tb) and 
SUPPST= {supTb,A PST (Tb)}exp(- bJ$). One nice feature 
of the supremum statistic is that it yields an estimate of the 
shift date. See Bai (1993) for a discussion of the proper- 
ties of such estimates. Because the results of Andrews and 
Ploberger (1994) do not permit unit-root errors, none of the 
PS statistics are in the class of optimal tests. 

When {ut) is stationary, limiting distributions of the 
Chow; and ChowLT statistics are given by Andrews 
(1993) and Andrews and Ploberger (1994). When {ut) 

Table 2. 	 Asymptotic Distributions: MeanPST, ExpPST and SupPST 
Statistics, Unknown Shift Date, Stationary Errors 

A* = .O1 A* = . I 0  

% MeanPS ExpPS SupPS MeanPS ExpPS SupPS 

90.0 2.000 1.403 5.426 1.832 1.303 5.424 
95.0 2.608 2.089 7.680 2.41 1 2.029 7.680 
97.5 3.278 3.075 10.416 3.095 3.044 10.416 
99.0 4.089 4.723 14.453 3.856 4.626 14.453 

NOTE: The critical values were calculated via simulation methods using N(0, 1) i ~ drandom de- 
viates to approximate the Wiener processes defined In the asymptotic d~stribut~ons. The Integrals 
were approximated by the normalized sums of 1,000 steps using 10,000 replications. 

fined as meanPS~  = {T-lCTbEAPS~(Tb)~xp(-bJ$) 
PS,(A)}exp(-bJ*),=+ 	 { s u ~ ~ ~ ( ~ . , ~ - ~ . )  where J* = 

has a unit root, limiting distributions of the C ~ O W L T  
statistics are given by Vogelsang (1994a), and the 
Chow; statistics diverge to m. The limiting distribu-
tions of the PS statistics follow from the continuous-
mapping theorem. Under Assumption 1, meanPS~  + 
sirA*PS(A) d ~ .  	 ~ X ~ ( + P S ( A ) )e x p P S ~+ l o g { ~ i ~ * *  d ~ ) ,  
and supPST + sup,,(,, ,,-,,]PS(A). Under Assumption 

2, meanPS~  =+ { PS, (A) dA}exp(-bJ*), e x p P S ~  

+ 	l o g { ~ ~ * - * a e x p ( ~ ~ ~ , ( h ) )dA}exp(-bJ*), and s u p P S ~  

infx,(,. ,1-,*) J(A). The distributions of the PS statistics 
are nonstandard, and critical values were simulated using 
methods similar to those used for Table 1 and are tabulated 
in Table 2 for A* = .O1 and .lo. Coefficients of the b(p) 
functions are given in Table 3. 

2. CONSISTENCY AND LOCAL 
ASYMPTOTIC POWER 

Consistency and local asymptotic power properties of the 
PS statistics are explored in this section and comparisons 
made with the Chow statistics. Suppose that {ut) is station- 
ary. When the break date is known, it directly follows from 
theorem 3 of Vogelsang (in press) that the PS;;? statistic is 
consistent. When the break date is unknown, consistency of 
s u p P S ~  trivially holds provided A, E (A*;1 - A*). Consis- 
tency of the mean and exponential statistics follows from 
straightforward arguments. A formal proof is omitted but 
can be found in the working paper by Vogelsang (1994b). 
When {ut) has a unit root, none of the tests are consistent. 
This is not surprising because it is not possible to construct 
a consistent test for a shift in mean of a unit-root process. 

Now consider local asymptotic power of the tests. Com- 
parisons are drawn between the Chow and PS tests. The 
insight to be gained by comparing local asymptotic power 
stems from the fact that the Chow;(Tt), meanchow;, and 
expChow; are optimal test statistics when the errors are 
iid and Gaussian. The local asymptotic analysis was car- 
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ried out using local alternatives of the form 6~ = CT-''~ 

with the DGP yt = p +STDU,"+ut. The transformed model 
under the local alternative becomes zt = pt + GT DT,C +St. 
Under these local alternatives limiting distributions of the 
statistics can be obtained using straightforward arguments 
along with the continuous-mapping theorem. When {u t )is 
stationary, the local asymptotic distributions are nondegen- 
erate, and power depends on c/a. When {ut) has a unit 
root, the local asymptotic distributions are identical to the 
limiting null distributions. This is no surprise because the 
tests are inconsistent when {u t )has a unit root. Represen- 
tations of the limiting distributions when {u t )is stationary 
are not informative and are not reported. The local asymp- 
totic distributions, however, were used to compute asymp- 
totic power curves. 

Asymptotic power curves with stationary errors are pre- 
sented in Figures 1 and 2. In the case of a known shift date, 
the asymptotic power function of the Chow statistic was 
computed analytically because the local asymptotic distri- 
bution is equivalent to a noncentral chi-squared distribution 
with 1 df. In the other cases the local asymptotic distribu- 
tions are nonstandard, and the asymptotic power functions 
were simulated. All of the power curves were computed us- 
ing rejections based on 5% asymptotic critical values. In all 
cases, A, = .5, and for an unknown break date A* = .01. 

Figure 1 displays the the asymptotic power curves of 
Chowr(T,") and PS,"(T,") when the break date is known 
for c/o ranging from 0 to 12. As predicted by the theory, 
Chowr(T,") yields a more powerful test than PS,"(T,"). Sur-
prisingly though, the power of the PS test is not significantly 
lower than the power of the Chow test. When the shift date 
is unknown, the power differences are smaller. The power 
of all the composite statistics is shown in Figure 2. Notice 
that the power of the three PS tests is similar but below the 
power of the mean and exponential Chow tests as the theory 
predicts. For the supremum statistics, things are much dif- 
ferent. SupPST is more powerful than supChowT for small 
to moderate values of c/o. This is a very striking result, 
and indicates that supPST can lead to a more powerful test 
than supChowT. 

Figure 1. Local Asymptotic Power With Known Break Date: A, = .5, 
5% Nominal Size: -,Chow; - - - , PSm. 

Figure 2. Local Asymptotic Power With Unknown Break Date: A* 
= .01, 5% Nominal Size: -, Mean Chow; . . ., ExpChow; . . . . , 
Supchow; - -, MeanPS; -., ExpPS; . - .. SupPS. 

3. FINITE-SAMPLE SIZE AND POWER 

This section presents results from simulation experiments 
meant to assess the finite-sample size and power of the PS 
tests compared to the Chow tests. Size results are first dis- 
cussed for AR(1) and MA(1) errors. Size and power are 
then examined for more general ARMA(p, q) errors using 
parameterizations based on point estimates from some typ- 
ical economic time series. To mimic how the tests are used 
in practice, the statistics are applied as if the true dynamic 
structure of the errors is unknown. 

3.1 Finite-Sample Size With AR(l)/MA(l) Errors 

In this subsection the errors are modeled as either AR(1) 
or MA(1) processes. The following DGP was used for these 
simulations: yt = ut. ut = a u t - ~+ ut uo= vo = 0, 
where vt - iid N(O.l). The parameter p was set equal 
to 0 because all the statistics are exactly invariant to p. 
A sample size of T = 100 was used for all simulations. 
The same set of random numbers was used in all simu- 
lations to minimize the influence of sampling error when 
comparing experiments. The initial seed for the random- 
number generator was set to -100 in all experiments. The 
number of replications was 2,000. Results from this sec- 
tion are only reported for a known break date, T," = 50. 
Qualitatively similar results were obtained for other break 
dates and unknown break date. For pure AR(1) errors 
a = -.9, -.8, . . . , .8. .9,0 = 0, and for pure MA(1) errors 
0 = -.9. -3, . . . . .8, .9, a = 0. Asymptotic 5% critical val- 
ues were used in all cases. 

The Chow; statistic was implemented by estimating 
a2 using the automatic bandwidth procedure of Andrews 
(1991) with the quadratic spectral kernel. The ChowLT 
statistic was implemented using Regression (3) with k cho-
sen using the following data-dependent method following 
Perron and Vogelsang (1992). A maximal lag length, kmax, 
is first chosen. Regression (3) is estimated using kmax lags. 
The significance of the coefficient on the last lag is tested 
using a 5% two-tailed t test. If the coefficient is insignif- 



Figure 3. Finite Sample Size AR(1) Errors, Known Break Date: A, = 
.5, 5% Nominal Size, T = 100:-,P q ,  - - -,ChowLT;- -, Chow;. 

icant, the number of lags is reduced by 1. Again the co- 
efficient on the last included lag is tested. This procedure 
continues until a significant lag is found. If the coefficient 
on the kmax lag is significant, kmax is increased and the 
procedure is restarted. Ng and Perron (1995) gave a theo- 
retical justification for this approach. For these simulations, 
kmax = 5 was used. 

The exact size results are summarized in Figures 3 and 
4. In Figure 3, exact size is plotted for AR(1) errors. Notice 
that size is excellent for the PSF statistic and is never much 
greater than .05. This illustrates how effectively the JT ad-
justment controls size as the errors go from stationary to 
a unit root. On the other hand, the exact size of the Chow 
tests is often inflated well above .05, and the distortions be- 
come more severe as a approaches 1. This illustrates how 
uncertainty regarding the stationarity of the errors can be 
problematic for the exact size of the Chow tests. When the 
errors are MA(I), exact size is much more stable and is 
close to .05 for all the statistics provided that Q 2 0, as can 
be seen in Figure 4. For Q < 0, exact size is always be- 

Figure4. Finite Sample Size MA(1) Errors, Known Break Date: A, = 
.5, 5% Nominal Size, T = 100: -,P q ,  - - -,ChowLT;- -, ChowT. 
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low .05. If prewhitening is used as suggested by Andrews 
and Monahan (1992), some of the size distortion of Chow; 
for AR(1) errors can be reduced; however, exact size will 
still be much greater than .05 for a near or equal to 1. 
This size distortion cannot be completely reduced because 
Chow; diverges to cx, as T increases when a = 1. Exact 
size of ChowLT can be controlled by taking a conservative 
approach and using the unit-root critical value as suggested 
by Vogelsang (1994a). This will be an effective approach 
if the errors are AR(1) and a is close to 1 but will reduce, 
power when a is not close to 1 or the errors are MA(1). 
Because the PS? statistic is not a conservative test, it does 
not penalize power when the errors are stationary. 

3.2 Finite-Sample SizeIPower With ARM(p, q) Errors 

In this subsection, finite-sample size and power simula- 
tions are reported in the case of ARMA(p, q )  errors. This 
situation is the one most likely encountered in practice. Re- 
sults are reported for both a known shift date and an un- 
known shift date. Given the myriad of models that fall into 
the class of ARMA(p, q) models, results are reported using 
DGP's based on point estimates from fitting ARMA mod- 
els to several economic time series. The series are monthly 
unemployment rates from 1948-1992 for three groups- 
all civilians, males age 20 and over and females age 20 and 
over-and the yearly real exchange rate between the United 
States and Finland from 1900-1987 using gross domestic 
product deflators as the price indexes. The unemployment- 
rate series were taken from U.S. Department of Labor, Bu- 
reau of Labor Statistics (BLS) (1982), and recent issues 
of Employment and Earnings (BLS 1983-1993). The data 
sources for the real-exchange-rate series were given by Per- 
ron and Vogelsang (1992). ARMA models were fitted to 
these series and point estimates obtained. Details of the es- 
timation were given by Vogelsang (1994b). 

Using the point estimates of the fitted ARMA models, 
size and power were simulated using 2,000 replications 
of the DGP: yt = 6DU; + ut,ut = alut-l + a2ut-2 + 
a3ut-3 +vt + Q 1 ~ t - l+ Q 2 ~ t - 2 ,  where vt - iid N(0, a;).The 
parameter values are reported in Table 4 for the civilian- 
unemployment series and Table 5 for the real-exchange- 
rate series. Notice for the civilian-unemployment-rate se- 
ries that the sum of the AR parameters is close to 1 in all 
cases and Q1 is large and negative in the ARMA(3, I) pa- 
rameterization. For the real-exchange-rate series, the sum 
of the AR parameters is near .5 and Q1 is positive. So, 
these point estimates represent ARMA models that are ei- 
ther clearly stationary with a positive MA component or are 
close to a unit root with a negative MA component. Sam- 
ple size T = 540 was used for the civilian-unemployment- 
rate simulations, and sample size T = 100 was used for 
the U.S./Finland real-exchange-rate simulations. The shift 
date was assumed known for the civilian-unemployment 
simulations but assumed unknown for the real-exchange- 
rate simulations. For the civilian-unemployment-rate sim- 
ulations, S = .O, .5,  . . . ,2.5 and for the U.S./Finland real-
exchange-rate simulations, 6 = .O, .025, . . . , .1. The magni- 
tudes of 6 were chosen relative to the point estimates of 



Vogelsang: Testing for a Shift in Mean 

Table 4. Finite-Sample Size and Size-Adjusted Power, ARMA(p.q) Errors, Known Shift Date 

Probability of rejection 

Series 011 02 013 6 1  0 2  uv 6 PST ChowLT ChowT 

Civilian 

unemployment rate 

1948-1 992, monthly 

ARMA(3, 1) 


Civilian 

unemployment rate 

1948-1 992, monthly 

ARMA(2, 2) 


NOTE: DGP: yr = s ~ u :+ ut,  ut = a i u t - 1  + a ~ u t - 2  + a a u t - J  + vt + 81vt-; + 8zvt-2,  Vr N iid N(0, oZV),2,000 replications. 
T = 540, Xc  = .58. 

a,. For the ChowLT statistic, kmax = 15 for the civilian- for the real-exchange-rate simulations in which the break 
unemployment-rate simulations and kmax = 5 for the real- date is unknown. The PSF statistics are more powerful than 
exchange-rate simulations. As before, the Chow; statistic the ChowLT statistics in all cases. For small and medium 
was implemented using the automatic bandwidth of An- shifts the PSF statistics are more powerful than the Chow; 
drews (1991) with the quadratic spectral kernel. For the size statistics. For large shifts, however, the Chow; statistics are 

simulations, 5% asymptotic critical values were used, and more powerful than the PS statistics. If prewhitening is used 

power was size adjusted by using finite-sample critical val- for the Chow; statistic, size-adjusted power was similar to 

ues. Power was size adjusted to make power comparisons not using prewhitening. But, because prewhitening drives 

easier. exact size to near 0, unadjusted power of the Chow; statis-

The results are given in Tables 4 and 5 and can be sum- tics was very poor. 
Overall, in terms of the size/power trade-off, the PS marized as follows. Exact size of the PS statistics is close 

statistics perform better in finite samples compared to the 
to or below .05 in all cases. On the other hand, size of Chow statistics. Given that the PS statistics do not require 
ChowLT is often above .05, and Chow; is oversized in all a priori information about the dynamic structure of the er- 
cases. Prewhitening for ChowL; was also used, but it re- rors, they should prove very useful in practice. As an illus- 
sulted in size of nearly 0. Overall, the PS statistics have tration, the PS statistics were applied to the unemployment- 
much better exact size than the Chow statistics. rate and real-exchange-rate series. The results are reported 

Now turn to the size-adjusted power results. For the in Table 6. The PSZf1(1973:12) statistic was used for the 
civilian-unemployment-rate simulations, the Chow statis- unemployment-rate series, and the meanPS~,  expPST, and 
tics are generally more powerful than the PS? statistic. The supPST statistics were applied to all the series. As can be 
difference in power is minor for small and large shifts but seen in the table, the null hypothesis of a stable mean can 
larger for medium-sized shifts. Things are much different be rejected in many cases. 

Table 5. Finite-Sample Size and Size-Adjusted Power, ARMA(p,q) Errors, Unknown Shiff Date 

Probability of rejection 

Series 6 MnPS MnCL MnC* ExpPS ExpCL ExpC* SupPS SupCL SupC* 

U.S./Finland real T = 1 0 0  X c = . 4 2  .OO ,035 ,060 .I08 ,030 ,075 ,169 ,028 ,070 ,138 
exchange rate 011 = .87 012 = -.33 ,025 ,200 ,196 ,193 .I99 ,163 .I79 .I91 .I37 ,166 
1900-1987, yearly a3 = .0 .05 ,554 ,538 .544 ,550 ,487 ,522 .546 ,424 ,487 
ARMA(2, 0) 61 = .O O2 = .O ,075 .825 ,812 ,846 ,829 ,805 ,852 ,827 ,765 ,828 

uv = .04 . I  0 ,944 ,930 ,976 ,947 ,952 ,982 ,947 ,935 ,977 

U.S./Finland real T = 1 0 0  X,=.42 .OO ,043 ,084 .I30 ,039 ,115 .I93 ,037 .088 ,144 
exchange rate oil = .45 012 = .O ,025 ,152 .I42 .I61 .I45 .I22 .I32 .I46 ,114 ,129 
1900-1987, yearly 013 = .0 .05 ,409 ,374 ,425 ,409 ,330 ,378 ,410 ,307 ,362 
ARMA(1, 1) = .43 02 = .O ,075 ,674 ,603 ,728 ,671 ,600 ,705 ,672 ,585 ,695 

uv = .04 .I0 ,848 ,741 ,907 ,848 ,803 ,915 ,847 ,797 .908 

U.S./Finland real T = 1 0 0  Xc= .42  .OO ,037 .065 ,117 ,033 ,084 .I78 ,032 ,068 ,141 
exchange rate oil = - .5 012 = .48 ,025 ,176 .I73 ,179 .I70 ,149 .I55 .I72 ,122 ,149 
1900-1 987, yearly 013 = -.27 .05 ,487 ,463 ,487 ,486 ,423 ,448 ,486 ,359 ,426 
ARMA(3, 1) el = .94 62  = .O ,075 ,771 ,729 ,796 ,774 ,730 .782 ,773 ,681 ,766 

ov = .04 . I  0 ,913 ,882 .948 ,919 .916 ,960 ,917 ,891 ,954 

NOTE: DGP: yt = ~ D U ;+ ut,  ur = a 1  ut-1 + a p u r - 2  + n ~ u r - 3  + vt + 81 vt-1 + 82vt-2,  vt N lid N(0, m:), 2,000 replications. 
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Table 6. Empirical Results Using the PS Statistics: P Values 

Series Period TbC p q f  T;) MeanPST ExpPST SupPST T b ~ ~ P 

Civilian 1948 -1 992 1973:12 .01 
unemployment rate (monthly) 

Males age 20 + 1948 -1 992 1973:12 .03 
unemployment rate (monthly) 

Females age 20+ 1948 -1 992 1973:12 .02 
unemployment rate (monthly) 

U.S./Finland 1900 -1 987 
exchange rate (yearly) 

NOTE: T i U PI S  the estimated break date obtained using SupPS7. 

4. CONCLUSIONS 

BY using a simple a univariate time se-
ries, a test statistic for detecting a shift in mean based on 
partial sums of the data was constructed that is asymptoti- 
cally invariant to serial correlation in the data. Estimates of 
serial-~orrelation nuisance parameters are not required to 
use the test in practice. Perhaps more importantly, the tests 
are valid whether the errors are stationary or have a unit 
root' These PS have good power 'Om-
pared to Chow tests, which are optimal when the shift date 
is known and the errors are iid and Gaussian. In the case of 
an unknown break, the statistics of Andrews and Ploberger 
(1994) were used, and again the PS statistics have surpris- 
ingly good asymptotic power. If the supremum statistic of 
Andrews (1993) is used, the PS statistic has greater asymp- 
totic power than the Chow statistic for small to medium 
breaks. In finite samples, the PS statistics have excellent 
properties. Exact size is never oversized, and size-adjusted 
power in many cases is greater than the Chow tests. On the 
other hand, the Chow tests become substantially oversized 
as the persistence in the errors increases. In practice, the 
PS statistics should prove useful because they are easy to 
compute and do not require a choice of lag length, kernel, 
or truncation lag and offer a simple way to test for a stable 
mean. 
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